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STATISTICALLY CONVERGENT AND STATISTICALLY CAUCHY
SEQUENCE IN A CONE METRIC SPACE
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Abstract. In this paper we have introduced the concept of statistically convergent sequence

in case of cone metric space and constructed statistically convergent, Cauchy and complete

cone metric space and some theorems based on them. Consequently we have generalised several

results in cone metric spaces from metric spaces.
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1. Introduction

The concept of statistical convergence is found in Zygmund [16]. The notion of statistical
convergence was investigated by Steinhaus [9] and Fast [4] and later followed by Schoenberg
[8] independently. Over the years and under different names statistical convergence has been
discussed in the theory of Fourier analysis, ergodic theory, number theory, measure theory,
trigonometric series, turnpike theory and Banach spaces. Later on it was further investigated
from the sequence space point of view and linked with summability theory by Fridy [5], Rath
and Tripathy [6], Salat [7], Tripathy [10], Tripathy and Baruah [12], Tripathy and Dutta [13],
Tripathy and Sen ([14], [15]) and many others. In recent years, generalizations of statistical
convergence have appeared in the study of strong integral summability and the structure of
ideals of bounded continuous functions on locally compact spaces. Statistical convergence and its
generalizations are also connected with subsets of the Stone-Ćech compactification of the natural
numbers. Moreover, statistical convergence is closely related to the concept of convergence in
probability.

The notion of cone metric space has been applied by various authors in the recent past. It
has been applied for introducing and investigating different new sequence spaces and studying
their different algebraic and topological properties by Abdeljawad [1], Beg, Abbas and Nazir
[2], Dhanorkar and Salunke [3] and many others. In this article we have investigated different
properties of the notion of statically convergence in cone metric space.

2. Definitions and preliminaries

Definition 2.1. A subset P of a real Banach space E is called a cone if and only if
(i) P is closed, non-empty and P 6= {0}.
(ii) If a, b ∈ R, a, b ≥ 0 and x, y ∈ P , then ax + by ∈ P .
(iii) If both x ∈ P and −x ∈ P , then x = 0.
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For a given cone P ∈ E, we can define a partial ordering ≤ with respect to P by x ≤ y if and
only if y−x ∈ P, x < y will stand for x ≤ y and x 6= y, while x << y will stand for y−x ∈ intP ,
where intP denotes the interior of P .

Definition 2.2. A cone metric space is an ordered pair (X,d), where X is any set and d :
X ×X → E is a mapping satisfying:

(i) 0 < d(x, y) for all x, y ∈ X.
(ii) d(x, y) = 0 if and only if x = y.
(iii) d(x, y) = d(y, x) for all x, y ∈ X.
(iv) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Example 2.1. Let E = R2, P = {(x, y) ∈ E : x, y ≥ 0}, X = R and d : X ×X → E defined
by d(x, y) = (|x− y|, α|x− y|), where α ≥ 0, is a constant and x, y ∈ X. Then it is well known
that (X, d) is a cone metric space.

We provide the following example of a cone metric space involving sequence spaces.

Example 2.2. Let E = `∞, P = {(x1, x2, x3, . . .) ∈ E : x1, x2, x3, ... ≥ 0}, X = R and d :
X × X → E be defined by d(x, y) = (|x − y|, α1|x − y|, α2|x − y|, ...), where x, y ∈ X and
α = (αn) is any sequence in E = `∞. Then (X, d) is a cone metric space.

Throughout the article we consider cone metric space unless otherwise stated.

Definition 2.3. Let (X, d) be a cone metric space. Let {xn} be a sequence in X. If for every
c ∈ E with 0 << c there exists n0 such that for all n > n0, d(xn, x) << c, then {xn} is said to
be convergent to x ∈ X i.e. lim

n→∞xn = x.

Definition 2.4. Let (X, d) be a cone metric space. Let {xn} be a sequence in X. If for every
c ∈ E with 0 << c there exists n0 such that for all m,n > n0, d(xn, xm) << c then {xn} is called
Cauchy sequence in X.

Definition 2.5. A subset E ⊂ N is said to have density or asymptotic density δ(E) if

δ(E) = lim
n→∞

1
n

n∑

k=1

χE(k) exists,

where χE is the characteristic function of E or indicator function.

Definition 2.6. A sequence space E is said to be solid or normal if {αkxk} ∈ E whenever
{xk} ∈ E and for all sequences (αk) of scalars with |αk| ≤ 1 for all k ∈ N .

Let K = {k1 < k2 < k3, ...} ⊆ N and E be a class of sequences. A K-step set of E is a set of
sequences λE

K = {(xkn) ∈ w : (xk) ∈ w.
A canonical pre-image of a sequence (xkn) ∈ λE

K is a sequence (yn) ∈ w, defined as follows:

yn =
{

xn, if n ∈ K,

0̄, otherwise.

Definition 2.7. A canonical pre-image of a step set λE
K is a set of canonical pre-images of all

elements in λE
K i.e. y is in canonical pre-image λE

K if and only if y is canonical pre-image of
some x ∈ λE

K .

Definition 2.8. A class of sequences E is said to be monotone if E contains the canonical
pre-images of all its step sets.
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Remark 2.1. A class of sequences E is solid ⇒ E is monotone.

Definition 2.9. A sequence space E is said to be convergence free if {xn} ∈ E implies {yn} ∈ E

such that yn = 0 whenever xn = 0.

Definition 2.10. A class of sequences E is said to be symmetric if xπ(n) ∈ E, whenever (xk) ∈ E

where π is a permutation of N .

Definition 2.11. A sequence space E is said to be a sequence algebra if (xkyk) ∈ E whenever
xk, yk ∈ E.

In this article we introduced the following definitions.

Definition 2.12. Let (X, d) be a cone metric space. Let {xn} be a sequence in X. If for every
c ∈ E with 0 << c such that δ({n ∈ N : d(xn, x) >> c}) = 0 almost all n. Then {xn} is said to
be statistically convergent to x ∈ X and we denote by xn

stat−→ x.

Note 2.1. On taking x = θ, the zero element of X, in the above definition, we will get the
definition of statistically null sequence in a cone metric space.

Definition 2.13. A sequence {xn} in a cone metric space (X, d) is said to be statistically
Cauchy if for any c ∈ E with c >> 0 there exits a natural number m(c) such that δ({n ∈ N :
d(xn, xm) >> c}) = 0 almost all n.

We procure the following decomposition theorem, which will be used in establishing the results
of this article.

Lemma 2.1. The following statements are equivalent:
(i ) xn

stat−→ x.
(ii) there exists K = {ki : i ∈ N} ⊂ N such that δ(K) = 1 and lim

i→∞
xki = L.

(iii) there exists a stat-null sequence {zk} and convergent sequence {yk} such that xk = yk +zk

with lim
k→∞

yk = L. In this case if {xk} is bounded, then {xk} = {yk}+ {zk}.
(iv) there exists a convergent sequence {yk} such that xk = yk for almost all k.

We formulate the following results, which can be easily established.

Lemma 2.2. Let (X, d) be a cone metric space. If {xn},{yn} are two sequences in X such that
xn → x, yn → y then d(xn, yn) → d(x, y) as n →∞.

Lemma 2.3. Let (X, d) be a cone metric space and x ∈ X. If {xn} converges to x and {xn}
converges to y then x = y.

Lemma 2.4. Let (X, d) be a cone metric space and x ∈ X. If {xn} converges to x then
d(xn, x) → 0 as n →∞.

Lemma 2.5. Let (X, d) be a complete cone metric space. Then `∞ the set of all bounded
sequences is a closed subspace of w, the set of all sequences.

3. Main results

In this section we establish the result of this article.

Theorem 3.1. Let (X, d) be a cone metric space. If {xm},{ym} are sequences in X such that
xm

stat−→ x,ym
stat−→ y, then d(xm, ym) stat−→ d(x, y) as m →∞.
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Proof. Since xm
stat−→ x and ym

stat−→ y so by Lemma 2.10 there exists K1 = {ki : i ∈ N} ⊂ N and
K2 = {kj : j ∈ N} ⊂ N such that δ(K1) = δ(K2) = 1 and

lim
i→∞

xki = x, lim
j→∞

ykj = y. (1)

Now, δ(K1) = δ(K2) = 1
⇒ δ(K1 ∩K2) = 1. Let K1 ∩K2 = {mi : i ∈ N}.
By (1) and Lemma 2.2, d(xm, ym) stat−→ d(x, y). Since there exists K1 ∩K2 = {mi : i ∈ N} such
that δ(K1 ∩K2) = 1 and lim

i→∞
d(xm, ym)= d(x, y), so by Lemma 2.10 we get,

d(xm, ym) stat−→ d(x, y).
This completes the proof. ¤

Theorem 3.2. Let (X, d) be a cone metric space and x, y ∈ X. If {xn} is a sequence in X such
that xn

stat−→ x and xn
stat−→ y, then x = y.

Proof. Suppose xn
stat−→ x and xn

stat−→ y, so for any c ∈ E with 0 << c we can find n0 such that
for any n ≥ n0,we have δ({n ∈ N : d(xn, x) >> c

2}) = 0 and δ({n ∈ N : d(xn, y) >> c
2}) = 0.

⇒d(xn, x) << c
2 and d(xn, y) << c

2 , for almost all n ∈ N .
Now d(x, y) = d(x, xn) + d(xn, y)
⇒ d(x, y) << c

2+ c
2

⇒ d(x, y) << c.

Without loss of generality we can assume that
⇒ d(x, y) << c

k for all k ≥ 1.
⇒ c

k − d(x, y) ∈ P for all k ≥ 1.
Since P is closed and c

k →∞ as k →∞, so we have lim
n→∞( c

k − d(x, y)) ∈ P.

⇒ −d(x, y) ∈ P. (2)

But
d(x, y) ∈ P. (3)

Therefore from (2) and (3) we get,
d(x, y) = 0 ⇒ x = y. ¤

Theorem 3.3. Let (X, d) be a complete cone metric space. Then m = c ∩ `∞ that is the class
of all bounded statistically convergent sequences over X is complete.

Proof. Let {xi} be a Cauchy sequence in m. So for a given c >> 0 there exists n0 such that
sup

k
d(xn

k , xm
k ) << c

3 for all n,m ≥ n0

⇒ d(xn
k , xm

k ) <<
c

3
for each fixed k ∈ N. (4)

⇒ {xi
k} is a Cauchy sequence in (X, d) which is complete.

Hence it converges for each k ∈ N .
Let lim

k→∞
xn

k = x, for k ∈ N .

Now we have to show that {xk} ∈ m, δ({k ∈ N : d(xk, L) << c
3} = 1 for some L ∈ X.

xi
k

stat−→ Li each i ∈ N .
⇒ δ({k ∈ N : d(xi

k, L
i) << c

3} = 1

Ai = {k ∈ N : d(xi
k, L

i) <<
c

3
}. (5)

Let n0(c) be chosen such that for k ∈ Ai ∩Aj for all i, j ≥ n0,
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d(Li, Lj) ≤ d
(
L2′ , x2′

k

)
+ d(xi

k, x
j
k) + d(xj

k, L
j)

⇒ d(Li, Lj) << c by (4) and (5).
Hence {Li} is a Cauchy sequence in (X, d), which is complete.

Let lim
i→∞

Li = L, say.

Now we show that {xn} is statistically convergent to L.
d(xi, L) ≤ d(xk, x

i
k) + d(xi

k, L
i) + d(Li, L)

⇒ d(xi, L) << c on the set Ai∩N ∩N = Ai and δ(Ai) = 1. Hence m is complete cone metric
space. This completes the proof. ¤

Theorem 3.4. The class of all statistically convergent sequences is neither solid nor normal,
where as the class of all statistically null sequences is solid and thus is monotone.

Proof. The class of statistically null sequences is solid can be established following standard
techniques. The result follows from the following example. ¤

Example 3.1. Let E = R2, P = {(x, y) ∈ E : x, y ≥ 0},X = R,d : X ×X → E be defined by
d(x, y) = (|x − y|, α|x − y|), where α ≥ 0, is a constant and x, y ∈ X. Consider the sequence
(xk) defined by

xk =
{

k, for all k = i2, i ∈ N,

1, otherwise.

Then clearly (xk) is statistically convergent to with respect to 1 to the cone metric space consid-
ered. Now consider the sequence of scalars (αk) defined by αk = (−1)k, for all k ∈ N . Then it
can be easily verified that the sequence (αkxk) = ((−1)kxk) is not statistically convergent with
respect to the cone metric consider above. Hence the class of all statistically convergent sequences
is not normal and hence is not solid.

Theorem 3.5. The classes of all statistically convergent sequences and statistically null are not
symmetric.

Proof. The result follows from the following example.

Example 3.2. Consider the cone metric space considered in Example 3.1. Consider the sequence
(xk) defined by

xk =
{

k, for all k = i2, i ∈ N,

0, otherwise.

Then clearly (xk) is statistically convergent to o with respect to the cone metric space considered.
Now consider the rearrangement of the sequence (xk) defined by (yk) = (x1, x2, x4, x3, x9, x5, x16,

x6, x25, x7, x36, ...) Then it can be easily examined that the sequence (yk) is not statistically con-
vergent with respect to the cone metric consider above. Hence the class of all statistically con-
vergent sequences is not symmetric.

¤

Theorem 3.6. The classes of all statistically convergent sequences and statistically null are not
convergence free.

Proof. The result follows from the following example.

Example 3.3. Consider the cone metric space considered in Example 3.1. Consider the sequence
(xk) defined by

xk =
{

1, for all k = i2, i ∈ N,

k−1, otherwise.
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Then clearly (xk) is statistically convergent to 0 with respect to the cone metric space considered.
Consider the sequence (yk) defined as follows.

yk =
{

1, for all k = i2, i ∈ N,

k, otherwise.

Then it can be easily examined that the sequence (yk) is not statistically convergent with respect
to the cone metric consider above. Hence the class of all statistically convergent sequences is not
convergence free.

We state the following result without proof, which can be established using standard techniques.

¤

Theorem 3.7. The classes of all statistically convergent and statistically null sequences are
sequence algebra.
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